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This paper focuses on finite minimax problems with many functions, and their solutions by means of

exponential smoothing. We conduct run-time complexity and rate of convergence analysis of smoothing

algorithms and compare them with those of SQP algorithms. We find that smoothing algorithms may have

only sublinear rate of convergence, but as shown by our complexity results, their slow rate of convergence

may be compensated by small computational work per iteration. We present two smoothing algorithms with

active-set strategies that reduce the effect of ill-conditioning using novel precision-parameter adjustment

schemes. Numerical results indicate that the proposed algorithms are competitive with other smoothing and

SQP algorithms, and they are especially efficient for large-scale minimax problems with a significant number

of functions ε-active at stationary points.
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1 Introduction

There are many applications that can be expressed as finite minimax problems of the form

(P ) min
x∈Rd

ψ(x), (1)

where ψ : Rd → R is defined by

ψ(x)
4
= max

j∈Q
f j(x), (2)

and f j : Rd → R, j ∈ Q
4
= {1, ..., q}, q > 1, are smooth functions. Minimax problems of the

form (P ) may occur in engineering design [1], control system design [2], portfolio optimization

[3], best polynomial approximation [4], or as subproblems in semi-infinite minimax algorithms

[5]. In this paper, we focus on minimax problems with many functions, which may result

from finely discretized semi-infinite minimax problems or optimal control problems.
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The non-differentiability of the objective function in (P ) poses the main challenge for

solving minimax problems, as the usual gradient methods cannot be applied directly. Many

algorithms have been proposed to solve (P ); see for example [6–8] and references therein.

One approach is sequential quadratic programming (SQP), where (P ) is first transcribed

into the standard nonlinear constrained problem

(P ′) min
(x,z)∈Rd+1

{z | f j(x)− z ≤ 0, j ∈ Q} (3)

and then a SQP algorithm is applied to solve (P ′), advantageously exploiting the special

structure in the transcribed problem; see [7, 9]. Other approaches also based on (P ′) include

interior point methods [8, 10, 11] and conjugate gradient methods in conjunction with exact

penalties and smoothing [12].

Each iteration of the SQP algorithm in [7] solves two quadratic programs (QPs) to

compute the main search direction and a modified direction to overcome the Maratos effect.

The SQP algorithm in [7] appears especially promising for problems with many sequentially

related functions, as in the case of finely discretized semi-infinite minimax problems, due

to its aggressive active-set strategy. Recently, a SQP algorithm was proposed in [9], where

the modified direction is obtained by solving a system of linear equations. This reduces the

number of QPs from two to one per iteration, while still retaining global convergence as well

as superlinear rate of convergence. There is no active-set strategy in [9].

In general, an active-set strategy only considers functions that are active or almost

active (ε-active) at the current iterate, and thus greatly reduces the number of function and

gradient evaluations at each iteration of an algorithm. While the number of iterations to

solve a problem to required precision may increase, the overall effect may be a significant

reduction in the total number of function and gradient evaluations of the algorithm. The

numerical results for an active-set minimax algorithm in [13] give a 75% reduction in the

number of gradient evaluations, when compared against the same algorithm without the

active-set strategy. Significant reduction in computing time is also reported for active-set

strategies in [7].

In smoothing algorithms, see for example [6, 12–15], the exponential penalty function

introduced in [16] is used to produce a smooth (twice continuously differentiable) function

that approximates ψ(·). Since the problem remains unconstrained, one can use any standard

unconstrained optimization algorithm to solve the smoothed problem such as the Armijo
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Gradient or Newton methods [6] and Quasi-Newton method [13].

A fundamental challenge of smoothing algorithms is that the smoothed problem be-

comes increasingly ill-conditioned as the approximation gets more accurate. Hence, an

unconstrained optimization solver may experience numerical difficulties and slow conver-

gence. Consequently, the use of smoothing techniques is complicated by the need to balance

accuracy of approximation and problem ill-conditioning. An attempt to address these short-

comings was first made in [15], where a precision parameter for the smooth approximation

is initially set to a pre-selected value and is then increased by a fixed factor (specifically 2)

at each consecutive iteration. Effectively, the algorithm is solving a sequence of gradually

more accurate approximations. However, the main problem with this open-loop scheme is

its sensitivity to the selection of the multiplication factor, as can be seen from the numerical

results in [6].

In [6], the authors propose an adaptive precision-parameter adjustment scheme with ex-

ponential smoothing to ensure that the precision parameter is kept small (and thus control-

ling the ill-conditioning) when far from a stationary solution, and is increased as a stationary

solution is approached. The authors use the norm of the smoothed function gradient as a

proxy for the distance to a stationary solution. When the gradient norm of the smoothed

function falls below a user-specified threshold, the precision parameter is increased to a level

that ensures that the gradient norm falls within two user-specified bounds. The numerical re-

sults show that this adaptive scheme produces a much better management of ill-conditioning

than with open-loop schemes. The smoothing algorithms in [15] and [6] do not incorporate

any active-set strategy.

Using the same adaptive precision-parameter adjustment scheme as in [6], the authors

in [13] present a new active-set strategy that can be used in conjunction with exponential

smoothing for specifically tackling large-scale (large q) minimax problems. We note that the

convergence result in Theorem 3.3 of [13] may be slightly incorrect as it claims stationarity

for all accumulation points of a sequence constructed by their algorithm. However, their

proof relies on [6], which guarantees stationarity for only one accumulation point.

While the literature describes several smoothing algorithms for (P ), there appears to be

no run-time complexity and rate of convergence analysis of such algorithms. Moreover, we

find no comprehensive empirical comparison of run times for SQP and smoothing algorithms.

In this paper, we present run-time complexity and rate of convergence results for smoothing
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algorithms and compare them with those of SQP algorithms. We propose two new active-set

smoothing algorithms based on [6, 13] and present computational test results for large-scale

problem instances.

The next section describes the exponential smoothing technique and its properties. Sec-

tion 3 defines a smoothing algorithm and discusses run-time complexity and rate of conver-

gence. Section 4 presents two new smoothing algorithms and their proofs of convergence.

Section 5 contains numerical test results.

2 Exponential Smoothing

In this section, we describe the exponential smoothing technique, include for completeness

some known results, and show that the technique leads to consistent approximations (see

Section 3.3 of [17]).

For ease of analysis of active-set strategies, we consider the problem

(PΩ) min
x∈Rd

ψΩ(x), (4)

where

ψΩ(x)
4
= max

j∈Ω
f j(x), (5)

and Ω ⊂ Q. When Ω = Q, (PQ) is identical to (P ). Next, for any p > 0 and Ω ⊂ Q, we

consider a smooth approximating problem to (PΩ), called the smoothed problem,

(PpΩ) min
x∈Rd

ψpΩ(x), (6)

where

ψpΩ(x)
4
=

1

p
log

(∑
j∈Ω

exp
(
pf j(x)

)
)

(7)

= ψΩ(x) +
1

p
log

(∑
j∈Ω

exp
(
p(f j(x)− ψΩ(x))

)
)

(8)

is the exponential penalty function, with log(·) denoting the natural logarithm. This smooth-

ing technique was first introduced in [16] and later used in [6, 12–15].

We denote the set of active functions at x ∈ Rd by Ω̂(x)
4
= {j ∈ Ω|f j(x) = ψΩ(x)}. Ex-

cept as specifically stated in Appendix A, we denote components of a vector by superscripts.

We also let N denote the set of positive integers and N0
4
= N ∪ {0}.
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The parameter p > 0 is the smoothing precision parameter, where a larger p implies

higher precision as formalized by the following proposition; see for example [13].

Proposition 2.1. Suppose that Ω ⊂ Q and p > 0.

(i) If the functions f j(·), j ∈ Ω, are continuous, then ψpΩ(·) is continuous and decreases

monotonically as p increases.

(ii) For any x ∈ Rd,

0 ≤ log |Ω̂(x)|
p

≤ ψpΩ(x)− ψΩ(x) ≤ log |Ω|
p

, (9)

where | · | represents the cardinality operator.

(iii) If the functions f j(·), j ∈ Ω, are continuously differentiable, then ψpΩ(·) is continuously

differentiable, with gradient

∇ψpΩ(x) =
∑
j∈Ω

µj
p(x)∇f j(x), (10)

where

µj
p(x)

4
=

exp(pf j(x))∑

k∈Ω

exp(pfk(x))
=

exp(p[f j(x)− ψΩ(x)])∑

k∈Ω

exp(p[fk(x)− ψΩ(x)])
∈ (0, 1), (11)

and
∑

j∈Ω µj
p(x) = 1.

(iv) If the functions f j(·), j ∈ Ω, are twice continuously differentiable, then ψpΩ(·) is twice

continuously differentiable, with Hessian

∇2ψpΩ(x) =
∑
j∈Ω

µj
p(x)∇2f j(x) + p

∑
j∈Ω

µj
p(x)∇f j(x)∇f j(x)T

−p

[∑
j∈Ω

µj
p(x)∇f j(x)

][∑
j∈Ω

µj
p(x)∇f j(x)

]T

. (12)

Assumption 2.1. We assume that the functions f j(·), j ∈ Q, are twice continuously differ-

entiable.

The next lemma can be deduced from Lemma 2.2 of [6].
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Lemma 2.1. Suppose that Assumption 2.1 holds. Then, for every bounded set S ⊂ Rd,

there exists an L < ∞ such that

〈y,∇2ψpΩ(x)y〉 ≤ pL‖y‖2, (13)

for all x ∈ S, y ∈ Rd, Ω ⊂ Q, and p ≥ 1.

A continuous, nonpositive optimality function for (PΩ) is given by

θΩ(x)
4
= − min

µ∈ΣΩ





∑
j∈Ω

µj(ψΩ(x)− f j(x)) + 1
2

∥∥∥∥∥
∑
j∈Ω

µj∇f j(x)

∥∥∥∥∥

2


 , (14)

where

ΣΩ
4
=

{
µ ∈ R|Ω||µj ≥ 0 for all j ∈ Ω,

∑
j∈Ω

µj = 1

}
, (15)

which results in the following optimality condition for (PΩ); see Theorems 2.1.1, 2.1.3, and

2.1.6 of [17].

Proposition 2.2. Suppose that Assumption 2.1 holds and that Ω ⊂ Q. If x∗ ∈ Rd is a local

minimizer for (PΩ), then θΩ(x∗) = 0.

The continuous, nonpositive optimality function

θpΩ(x)
4
= − 1

2
‖∇ψpΩ(x)‖2 (16)

characterizes stationary points of (PpΩ) as stated in the next proposition; see Proposition

1.1.6 in [17].

Proposition 2.3. Suppose that Assumption 2.1 holds, p > 0, and Ω ⊂ Q. If x∗ ∈ Rd is a

local minimizer for (PpΩ), then θpΩ(x∗) = 0.

We next show that the exponential smoothing technique leads to consistent approxima-

tions (see Section 3.3 in [17]), which ensures that globally and locally optimal points as well

as stationary points of (PpΩ) converge to corresponding points of (PΩ), as p → ∞. Consis-

tent approximations also facilitate the construction of implementable algorithms for (P ); see

Algorithm 4.1 below.

We define consistent approximation as on page 399 of [17].
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Definition 2.1. For any Ω ⊂ Q, p > 0, we say that the pair ((PpΩ), θpΩ(·)) is a consistent

approximation to ((PΩ), θΩ(·)) if (i) (PpΩ) epi-converges to (PΩ), as p →∞, and (ii) for any

sequences {xi}∞i=0 ⊂ Rd and {pi}∞i=0, pi > 0 for all i, and x∗ ∈ Rd such that xi → x∗ and

pi →∞, as i →∞, lim supi→∞ θpiΩ(xi) ≤ θΩ(x∗).

Theorem 2.1. Suppose that Assumption 2.1 holds, p > 0, and Ω ⊂ Q. Then, the pair

((PpΩ), θpΩ(·)) is a consistent approximation to ((PΩ), θΩ(·)).

Proof. We follow the proofs of Lemmas 4.3 and 4.4 in [18], but simplify the arguments as

[18] deals with min-max-min problems. By Theorem 3.3.2 of [17], Proposition 2.1(ii), and

the continuity of ψΩ(·), it follows that (PpΩ) epi-converges to (PΩ), as p →∞.

We next consider the optimality functions. Let {xi}∞i=0 ⊂ Rd and {pi}∞i=0, pi > 0 for all

i, be arbitrary sequences and x∗ ∈ Rd be such that xi → x∗ and pi → ∞, as i → ∞. Since

µj
p(x) ∈ (0, 1) for any j ∈ Ω, p > 0, and x ∈ Rd, {µpi

(xi)}∞i=0 is a bounded sequence in

R|Ω| with at least one convergent subsequence. Hence, for every such subsequence K ⊂ N0,

there exists a µ∞ ∈ ΣΩ such that µpi
(xi) →K µ∞, as i → ∞. Moreover, since µ∞ ∈ ΣΩ,

∑
j∈Ω µj

∞ = 1.

If j /∈ Ω̂(x∗), then there exist a t > 0 and i0 ∈ N such that f j(xi)− ψΩ(xi) ≤ −t for all

i ≥ i0. Hence, from (11), µj
pi

(xi) → 0, as i → ∞, and therefore µj
∞ = 0. By continuity of

∇f j(·), j ∈ Ω,

θpiΩ(xi) →K −1

2
‖

∑
j∈Ω

µj
∞∇f j(x∗)‖2 4

= θ∞Ω(x∗), (17)

as i →∞. Since µ∞ ∈ ΣΩ and µj
∞ = 0 for all j /∈ Ω̂(x∗), we find in view of (14) that

θ∞Ω(x∗) = −
∑
j∈Ω

µj
∞(ψΩ(x∗)− f j(x∗))− 1

2
‖

∑
j∈Ω

µj
∞∇f j(x∗)‖2 ≤ θΩ(x∗). (18)

This completes the proof.

3 Run-Time Complexity and Rate of Convergence

In this section, we focus on the run-time complexity and rate of convergence of smoothing

algorithms. Specifically, we deal with the following simple smoothing algorithm for solving

(P ) based on application of the Armijo Gradient Method1 to (PpQ).

1The Armijo Gradient Method uses the steepest descent search direction and the Armijo stepsize rule to solve an

unconstrained problem; see for example Algorithm 1.3.3 of [17].
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Algorithm 3.1. Smoothing Armijo Gradient Algorithm

Data: t > 0, x0 ∈ Rd.

Parameter: δ ∈ (0, 1).

Step 1. Set p∗ = log q/((1− δ)t).

Step 2. Generate a sequence {xi}∞i=0 by applying Armijo Gradient Method to (Pp∗Q).

We denote the optimal value of (P ) (when it exists) by ψ∗, the optimal value of (PpQ)

(when it exists) by ψ∗pQ for any p > 0, and the optimal solution of (PpQ) (when it exists) by

x∗pQ. Algorithm 3.1 has the following property.

Proposition 3.1. Suppose that Step 2 of Algorithm 3.1 has generated a point xi ∈ Rd such

that ψp∗Q(xi)− ψ∗p∗Q ≤ δt. Then, ψ(xi)− ψ∗ ≤ t.

Proof. The result follows directly from (9) and the selection of p∗.

Proposition 3.1 shows that we can obtain a near-optimal solution of (P ) by approxi-

mately solving (PpQ) for a sufficiently large p. As discussed in Section 1, Algorithm 3.1 will

be prone to ill-conditioning. Adaptive schemes for adjusting the precision parameter p and

the use of another method in Step 2 may perform better in practice. However, the following

study of run-time complexity and rate of convergence of Algorithm 3.1 provides fundamental

insights into smoothing algorithms in general.

We start with some intermediate results that utilize the following convexity assumption.

Assumption 3.1. Suppose that f j(·), j ∈ Q, are twice continuously differentiable and there

exist 0 < m ≤ M < ∞ such that

m‖y‖2 ≤ 〈y,∇2f j(x)y〉 ≤ M‖y‖2, (19)

for all x, y ∈ Rd, and for all j ∈ Q.

Lemma 3.1. Suppose that Assumption 3.1 holds. For any x, y ∈ Rd and p > 0,

m‖y‖2 ≤ 〈
y,∇2ψpQ(x)y

〉
. (20)
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Proof. From (12) and (19), we obtain that

〈
y,∇2ψpQ(x)y

〉
=

∑
j∈Q

µj
p(x)

〈
y,∇2f j(x)y

〉
+ p

∑
j∈Q

µj
p(x)

〈
y,∇f j(x)∇f j(x)T y

〉

− p

〈
y,

[∑
j∈Q

µj
p(x)∇f j(x)

][∑
j∈Q

µj
p(x)∇f j(x)

]T

y

〉

=
∑
j∈Q

µj
p(x)

〈
y,∇2f j(x)y

〉
+ p

∑
j∈Q

µj
p(x)

〈
y,∇f j(x)

〉2

− p

〈
y,

[∑
j∈Q

µj
p(x)∇f j(x)

]〉2

≥ m‖y‖2 + p
∑
j∈Q

µj
p(x)

〈
y,∇f j(x)

〉2 − p

〈
y,

[∑
j∈Q

µj
p(x)∇f j(x)

]〉2

.

Hence, we only need to show that the difference of the last two terms is nonnegative. Let

g : Rd → R be defined as g(z) = 〈y, z〉2. The function g is a composition of a convex function

with a linear function, so it is convex; see for example Proposition 2.1.5 of [19]. Hence, it

follows from Jensen’s inequality (see for example page 6 of [19]) that

∑
j∈Q

µj
p(x)g

(∇f j(x)
) ≥ g

(∑
j∈Q

µj
p(x)∇f j(x)

)
. (21)

Since p > 0, the result follows.

Proposition 3.2. Suppose that Assumption 3.1 holds and p ≥ 1. Then, the rate of conver-

gence for the Armijo Gradient Method to solve (PpQ) is linear with coefficient 1 − k/p, for

some k ∈ (0, 1). That is, for any sequence {xi}∞i=0 ⊂ Rd generated by the Armijo Gradient

Method when applied to (PpQ),

ψpQ(xi+1)− ψ∗pQ ≤
(

1− k

p

)
[ψpQ(xi)− ψ∗pQ)] for all i ∈ N0. (22)

Proof. Based on Lemmas 2.1 and 3.1, for every bounded set S ⊂ Rd there exist an L ∈
[m,∞) such that

m‖y‖2 ≤ 〈
y,∇2ψpQ(x)y

〉 ≤ pL‖y‖2, (23)

for all x ∈ S and y ∈ Rd and p ≥ 1. Hence, we deduce from Theorem 1.3.7 of [17] that the

rate of convergence for Armijo Gradient Method to solve (PpQ) is

1− 4mβα(1− α)

pL
∈ (0, 1), (24)
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where α, β ∈ (0, 1) are the Armijo line search parameters. Hence, k = 4mβα(1 − α)/L,

which is less than unity because α(1− α) ∈ (0, 1/4].

In order to analyze the run-time complexity of Algorithm 3.1, we need an assumption

on the complexity of function and gradient evaluations.

Assumption 3.2. We assume that there exist constants c, c′ < ∞ such that for any d ∈ N,

j ∈ Q, and x ∈ Rd, the computational work to evaluate f j(x) and ∇f j(x) is no larger than

cd and c′d2, respectively.

Assumption 3.2 holds for all problem instances considered in this paper (see Appendix

A) and appears reasonable for many practical situations. The following result can easily be

modified to account for other assumption about work per function and gradient evaluation.

Theorem 3.1. Suppose that Assumptions 3.1 and 3.2 hold. For any tolerance t ∈ (0, log q),

there exists a constant ct < ∞ such that the computational work in Algorithm 3.1 to generate

{xi}n
i=0, with the last iterate satisfying ψ(xn)− ψ∗ ≤ t, is no larger than ctqd

2 log q.

Proof. Since p∗ = log q/((1− δ)t) > 1 for t ∈ (0, log q), Proposition 3.2 applies and we find

that the number of iterations of the Armijo Gradient Method to obtain {xi}n
i=0 such that

ψp∗Q(xn)− ψ∗p∗Q ≤ δt is no larger than
⌈

log δt
t0

log(1− k
p∗ )

⌉
, (25)

where k is as in Proposition 3.2, t0 = ψ(x0) − ψ∗, and d·e denotes the ceiling operator.

Since the main computational work in each iteration for the Armijo Gradient Method is

to determine ∇ψp∗Q(xi), see (10), it follows by Assumption 3.2 that there exists a c∗ < ∞
such that the computational work in each iteration of the Armijo Gradient Method when

applied to (Pp∗Q) is no larger than c∗qd2. Hence, the computational work in Algorithm 3.1

to generate {xi}n
i=0, with ψp∗Q(xn)− ψ∗p∗Q ≤ δt, is no larger than

c∗qd2

⌈
log δt

t0

log(1− k
p∗ )

⌉
. (26)

Since p∗ = log q/((1 − δ)t), it follows from Proposition 3.1 that the computational work in

Algorithm 3.1 to generate {xi}n
i=0, with ψ(xn)− ψ∗ ≤ t, is no larger than

c∗qd2




log δt
t0

log
(
1− k(1−δ)t

log q

)


≤ c∗qd2

⌈
log δt

t0

−k(1−δ)t
log q

⌉
, (27)
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where we use the fact that | log x| ≥ |x− 1| for x ∈ (0, 1]. The result then follows.

Focusing on q, we see from Theorem 3.1 and its proof that the number of iterations for

Algorithm 3.1 to achieve a near-optimal solution of (P ) is O(log q). Moreover, the run-time

complexity of Algorithm 3.1 to achieve a near-optimal solution of (P ) is O(q log q).

For comparison, we next consider the run-time complexity of a SQP algorithm to achieve

a near-optimal solution of (P ). The main computational work in an iteration of a SQP

algorithm involve solving a convex QP with d + 1 variables and q inequality constraints [7].

Introducing slack variables to convert into standard form, this subproblem becomes a convex

QP with d+1+q variables and q equality constraints. Based on [20], the number of operations

to solve the converted QP is O((d+1+ q)3). Assuming that the number of iterations a SQP

algorithm needs to achieve a near-optimal solution of (P ) is O(1), and again focusing on

q, the run-time complexity of a SQP algorithm to achieve a near-optimal solution of (P ) is

no better than O(q3). This complexity, when compared with O(q log q) of Algorithm 3.1,

indicates that smoothing algorithms may be more efficient than SQP algorithms for minimax

problems with many functions.

Next, we consider the rate of convergence for Algorithm 3.1. Suppose that Assumption

3.1 holds and that Step 2 of Algorithm 3.1 has generated a sequence {xi}n
i=0. Then, in view

of (9) and Proposition 3.2,

ψ(xn)− ψ∗ ≤ ψp∗Q(xn)− ψ∗p∗Q +
log q

p∗

≤
(

1− k

p∗

)n [
ψp∗Q(x0)− ψ∗p∗Q

]
+

log q

p∗

≤
(

1− k

p∗

)n [
ψ(x0) +

log q

p∗
− ψ(x∗pQ)

]
+

log q

p∗

≤
(

1− k

p∗

)n

[ψ(x0)− ψ∗] +
2 log q

p∗
, (28)

where k is as in Proposition 3.2. We examine the rate at which ψ(xn) − ψ∗ vanishes as

n → ∞. As is clear from the right-hand side of (28), ψ(xn) − ψ∗ may not vanish if p∗ is a

constant as n →∞. Hence, p∗ should be large when n is large. Let e0
4
= ψ(x0)−ψ∗ and, for

any n ∈ N and pn ≥ 1, let

en
4
= e0

(
1− k

pn

)n

+
2 log q

pn

. (29)

In view of (28), the quantity en is an upper bound on ψ(xn)−ψ∗ when p∗ = pn in Algorithm

3.1.
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Before we present the rate of convergence results for Algorithm 3.1, we need the following

trivial technical result.

Lemma 3.2. For x ∈ [0, 1/2],

−2x ≤ log(1− x) ≤ −x. (30)

We next state the rate of convergence of Algorithm 3.1, which shows that the rate is no

better than sublinear even for an “optimal” choice of p∗.

Theorem 3.2. Suppose that Assumption 3.1 holds. Let {pn}∞n=1, with pn ≥ 1, n ∈ N, be

a sequence of precision parameters and, for any n ∈ N, let {xi}n
i=0 ⊂ Rd be a sequence

generated by Algorithm 3.1 with p∗ = pn. Then,

lim inf
n→∞

log en

log n
≥ −1. (31)

If pn = ζn/ log n for all n ∈ N, with ζ ∈ (0, k], where k is as in Proposition 3.2, then

lim
n→∞

log en

log n
= −1. (32)

Proof. For any n ∈ N, we see from (29) that

log en = log

(
exp

[
log e0 + n log

(
1− k

pn

)]
+

2 log q

pn

)

≥ log

(
max

{
exp

[
log e0 + n log

(
1− k

pn

)]
,
2 log q

pn

})

= max

{
log

(
exp

[
log e0 + n log

(
1− k

pn

)])
, log

2 log q

pn

}
.

Hence, for any n ∈ N, n > 1,

log en

log n
≥ max





log e0

log n
+

n log
(
1− k

pn

)

log n
,− log pn

log n
+

log 2

log n
+

log log q

log n



 . (33)

Let ε > 0 be arbitrary. Then, there exists a n0 ∈ N such that log log q/ log n ≥ −ε for all

n ≥ n0. If log pn/ log n ≤ 1 and n ≥ max{2, n0}, then

log en

log n
≥ − log pn

log n
+

log 2

log n
+

log log q

log n
≥ − log pn

log n
− ε ≥ −1− ε. (34)

Alternatively, suppose that log pn/ log n > 1. Hence, n/pn < 1, and if n ≥ 2k, then k/pn ∈
(0, 1/2]. Based on Lemma 3.2 and (33),

log en

log n
≥ log e0

log n
+

n log
(
1− k

pn

)

log n
≥ log e0

log n
+

n
(
− 2k

pn

)

log n
≥ log e0

log n
− 2k

log n
(35)
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for all n ≥ 2k such that log pn/ log n > 1. Thus, there exists n1 ≥ max{n0, 2k} such that

log e0

log n
− 2k

log n
≥ −1− ε (36)

for all n ≥ n1. Hence, for all n ≥ n1,

log en

log n
≥ −1− ε. (37)

Since ε is arbitrary, (31) then follows.

Next, we will prove the second part of the theorem. Since pn = ζn/ log n, where ζ ∈
(0, k], and from (29),

log en = log

(
exp

[
log e0 + n log

(
1− k log n

ζn

)]
+

2 log q log n

ζn

)
. (38)

There exists n2 ∈ N such that k log n/ζn ∈ [0, 1/2] for all n ≥ n2. Thus, by Lemma 3.2

log

(
exp

[
log e0 + n

(
−2k log n

ζn

)]
+

2 log q log n

ζn

)

≤ log en

≤ log

(
exp

[
log e0 + n

(
−k log n

ζn

)]
+

2 log q log n

ζn

)
(39)

for all n ≥ n2. We first consider the lower bound in (39),

log

(
exp

[
log e0 + n

(
−2k log n

ζn

)]
+

2 log q log n

ζn

)

= log

(
2 log q log n

ζn

[
exp

(
log e0 + log n−2k/ζ

)
2 log q log n

ζn

+ 1

])

= log

(
2 log q log n

ζn

)
+ log

(
e0ζn1− 2k

ζ

2 log q log n
+ 1

)
. (40)

Since ζ ∈ (0, k] and by continuity of the log(·) function,

lim
n→∞

log

(
e0ζn1− 2k

ζ

2 log q log n
+ 1

)
= 0. (41)

Continuing from (40), and using (41), we obtain that

lim
n→∞

log
(

2 log q log n
ζn

)
+ log

(
e0ζn

1− 2k
ζ

2 log q log n
+ 1

)

log n

= lim
n→∞

log
(

2 log q log n
ζn

)

log n
+ lim

n→∞

log

(
e0ζn

1− 2k
ζ

2 log q log n
+ 1

)

log n

= lim
n→∞

log 2 + log log q + log log n− log ζ − log n

log n

= −1. (42)
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Similar arguments lead to the result that the upper bound in (39) also tends to −1, as

n →∞. Hence, the conclusion follows.

Theorem 3.2 implies that for large n, en is no smaller than approximately 1/n for any

choice of the precision parameter pn. Moreover, with the “optimal” choice of pn = ζn/ log n,

en ≈ 1/n. Hence, the rate of convergence of en is sublinear. Since en is an upper bound on

the distance to the optimal value after n iterations of Algorithm 3.1 with p∗ = pn, Algorithm

3.1 has rate of convergence no better than sublinear as the next result formalizes.

Corollary 3.1. Suppose that Assumption 3.1 holds. Let {pn}∞n=1, with pn ≥ 1, n ∈ N,

be a sequence of precision parameters and, for any n ∈ N, let {xi}n
i=0 ⊂ Rd be a sequence

generated by Algorithm 3.1 with p∗ = pn = ζn/ log n, with ζ ∈ (0, k], where k is as in

Proposition 3.2. Then

lim sup
n→∞

log(ψ(xn)− ψ∗)
log n

≤ −1. (43)

Proof. From (28) and (29), ψ(xn)− ψ∗ ≤ en for all n ∈ N. Thus, for all n ∈ N, n > 1,

log(ψ(xn)− ψ∗)
log n

≤ log en

log n
. (44)

The result then follows from Theorem 3.2.

SQP algorithms for (P ) achieve superlinear rate of convergence; see for example [7,

9]. We note, however, that the computational work per iteration for SQP algorithms as

discussed above is at least O((d + q)3). On the other hand, the computational work per

iteration of Algorithm 3.1 is O(qd2) under Assumption 3.2. Hence, there may be classes of

problem instances on which smoothing algorithms may perform better than SQP algorithms.

The next section gives two novel smoothing algorithms that aim to manage the precision

parameter effectively to avoid ill-conditioning.

4 Smoothing Algorithms

We present two smoothing algorithms to solve (P ). The first algorithm, Algorithm 4.1 below,

is based on Algorithm 3.2 in [13], but uses a much simpler rule for precision adjustment. The

second algorithm, Algorithm 4.2 below, adopts a novel line search rule that aims to ensure

descent in ψ(·) and, if that is not possible, increases the precision parameter. Previous

smoothing algorithms [6, 13] do not check for descent in ψ(·).
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We use the following notation. The ε-active set, ε > 0, is denoted by

Qε(x)
4
= {j ∈ Q|ψ(x)− f j(x) ≤ ε}. (45)

Similar to Algorithm 3.2 of [13], we compute a search direction using a d× d matrix BpΩ(x).

We consider two options. When

BpΩ(x) = I, (46)

the d×d identity matrix, the search direction is equivalent to the steepest descent direction.

When

BpΩ(x) = ηpΩ(x)I + HpΩ(x), (47)

the search direction is a Quasi-Newton direction, where

HpΩ(x)
4
= p


∑

j∈Ω

µj
p(x)∇f j(x)∇f j(x)T −

(∑
j∈Ω

µj
p(x)∇f j(x)

)(∑
j∈Ω

µj
p(x)∇f j(x)

)T

 ,

(48)

ηpΩ(x)
4
= max{0, δ − epΩ(x)}, (49)

and epΩ(x) is the smallest eigenvalue of HpΩ(x).

We next present the two algorithms and their proofs of convergence.

Algorithm 4.1.

Data: x0 ∈ Rd.

Parameters: α, β ∈ (0, 1), p0 ≥ 1, ω = 10 log q/p0, function BpΩ(·) as in (46) or (47),

ε0 > 0, ξ > 1, ς > 1.

Step 1. Set i = 0, j = 0, Ω0 = Qε0(x0).

Step 2. Compute the search direction hpiΩi
(xi) by solving the equation

BpiΩi
(xi)hpiΩi

(xi) = −∇ψpiΩi
(xi). (50)

Step 3. Compute the stepsize λi = βki , where ki is the largest integer k such that

ψpiΩi
(xi + βkhpiΩi

(xi))− ψpiΩi
(xi) ≤ −αβk‖hpiΩi

(xi)‖2 (51)

and

ψpiΩi
(xi + βkhpiΩi

(xi))− ψ(xi + βkhpiΩi
(xi)) ≥ −ω. (52)

Step 4. Set

xi+1 = xi + βkihpiΩi
(xi), (53)
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Ωi+1 = Ωi ∪Qεi
(xi+1). (54)

Step 5. Enter Subroutine 4.1, and go to Step 2 when exit Subroutine 4.1.

Subroutine 4.1. Adaptive Precision-Parameter Adjustment using Optimality Function

If

θpiΩi
(xi+1) ≥ −εi, (55)

set x∗j = xi+1, set pi+1 = ξpi, set εi+1 = εi/ς, replace i by i + 1, replace j by j + 1, and exit

Subroutine 4.1.

Else, set pi+1 = pi, set εi+1 = εi, replace i by i + 1, and exit Subroutine 4.1.

Steps 1 to 4 of Algorithm 4.1 is identical to Algorithm 3.2 of [13]. The key difference

between the two algorithms is the simplified rule to adjust pi in Subroutine 4.1. This dif-

ference calls for a different proof of convergence as compared to [13], and will be based on

consistent approximation. The next result is identical to Lemma 3.1 in [13].

Lemma 4.1. Suppose that {xi}∞i=0 ⊂ Rd is a sequence constructed by Algorithm 4.1. Then,

there exists an i∗ ∈ N0 and a set Ω∗ ⊂ Q such that working sets Ωi = Ω∗ for all i ≥ i∗.

Proof. By construction, the cardinality of the working sets {Ωi}∞i=0 is monotonically in-

creasing. Since the set Q is finite, the lemma must be true.

Theorem 4.1. Suppose that Assumption 2.1 holds. Then, any accumulation point x∗ ∈ Rd

of a sequence {x∗j}∞j=0 ⊂ Rd constructed by Algorithm 4.1 satisfies the first-order optimality

condition θQ(x∗) = 0.

Proof. Let Ω∗ ⊂ Q and i∗ ∈ N0 be as in Lemma 4.1, where Ωi = Ω∗ for all i ≥ i∗. As

Algorithm 4.1 has the form of Master Algorithm Model 3.3.12 in [17] for all i ≥ i∗, we

conclude based on Theorem 3.3.13 in [17] that any accumulation point x∗ of a sequence

{x∗j}∞j=0 constructed by Algorithm 4.1 satisfies θΩ∗(x
∗) = 0. The assumptions required to

invoke Theorem 3.3.13 in [17] are (i) continuity of ψΩ∗(·), ψpΩ∗(·), θΩ∗(·), and θpΩ∗(·), p > 0,

which follows by Assumption 2.1, Proposition 2.1(i), Theorem 2.1.6 of [17], and Proposition

2.1(iii); (ii) the pair ((PpΩ∗), θpΩ∗(·)) must be a consistent approximation to ((PΩ∗), θΩ∗(·)),
which follows by Theorem 2.1; and (iii) if Steps 1 to 4 of Algorithm 4.1 are applied repeat-

edly to (PpΩ∗) with a fixed p > 0, then every accumulation point x̂ of a sequence {xk}∞k=0

constructed must be a stationary point of (PpΩ∗), i.e., θpΩ∗(x̂) = 0, which follows by Theorem

3.2 in [13].
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Since θΩ∗(x
∗) = 0, from (14), there exists a µ ∈ ΣΩ∗ such that

∑
j∈Ω∗

µj(ψΩ∗(x
∗)− f j(x∗)) + 1

2

∥∥∥∥∥
∑
j∈Ω∗

µj∇f j(x∗)

∥∥∥∥∥

2

= 0. (56)

Let π ∈ ΣQ, πj = 0 for j ∈ Q− Ω∗, and πj = µj for j ∈ Ω∗. Thus, it follows from (14) that

θQ(x∗) ≥ −
∑
j∈Q

πj(ψ(x∗)− f j(x∗))− 1
2

∥∥∥∥∥
∑
j∈Q

πj∇f j(x∗)

∥∥∥∥∥

2

= 0. (57)

Since θQ(·) is a nonpositive function, the result follows.

Algorithm 4.2.

Data: x0 ∈ Rd.

Parameters: α, β ∈ (0, 1), function BpΩ(·) as in (46) or (47), ε > 0, δ ≥ 1, p0 ≥ 1, p̂ À
p0, κ À 1, ξ > 1, γ > 0, ν ∈ (0, 1), ∆p ≥ 1.

Step 0. Set i = 0, Ω0 = Qε(x0), k−1 = 0.

Step 1. Compute BpiΩi
(xi) and its largest eigenvalue σmax

piΩi
(xi). If

σmax
piΩi

(xi) ≥ κ, (58)

compute the search direction

hpiΩi
(xi) = −∇ψpiΩi

(xi). (59)

Else, compute the search direction hpiΩi
(xi) by solving the equation

BpiΩi
(xi)hpiΩi

(xi) = −∇ψpiΩi
(xi). (60)

Step 2a. Compute a tentative Armijo stepsize based on working set Ωi, starting from the

eventual stepsize of the previous iterate ki−1, i.e., determine

λpiΩi
(xi) = max

l∈{ki−1,ki−1+1,...}
{βl|ψpiΩi

(xi+βlhpiΩi
(xi))−ψpiΩi

(xi) ≤ αβl〈∇ψpiΩi
(xi), hpiΩi

(xi)〉}.
(61)

Set

yi = xi + βlhpiΩi
(xi). (62)

Step 2b. Forward track from yi along direction hpiΩi
(xi) as long as ψ(·) continues to decrease

using the following subroutine.

Substep 0. Set l′ = l,

zil′ = xi + βl′hpiΩi
(xi) and zil′−1 = xi + βl′−1hpiΩi

(xi). (63)
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Substep 1. If

ψ(zil′−1) < ψ(zil′), (64)

replace l′ by l′ − 1, set zil′−1 = xi + βl′−1hpiΩi
(xi), and repeat Substep 1.

Else, set zi = zil′ .

Substep 2. If pi ≤ p̂, go to Step 3. Else, go to Step 4.

Step 3. If

ψ(zi)− ψ(xi) ≤ − γ

pi
ν
, (65)

set xi+1 = zi, pi+1 = pi, ki = l′, set Ωi+1 = Ωi ∪Qε(xi+1), replace i by i + 1, and go to Step 1.

Else, replace pi by ξpi, replace Ωi by Ωi ∪Qε(zi), and go to Step 1.

Step 4. If

ψ(zi)− ψ(xi) ≤ − γ

pi
ν
, (66)

set xi+1 = zi, ki = l′, set pi+1 = pi + ∆p, set Ωi+1 = Ωi ∪Qε(xi+1), replace i by i + 1, and go

to Step 1.

Else, set xi+1 = yi, ki = l, set pi+1 = pi + ∆p, set Ωi+1 = Ωi ∪ Qε(xi+1), replace i by i + 1,

and go to Step 1.

As is standard in stabilized Newton methods (see for example Section 1.4.4 of [17]),

Algorithm 4.2 switches to the steepest descent direction if BpΩ(·) is given by (47) and the

largest eigenvalue of BpΩ(·) is large; see Step 1. Compared to Algorithm 3.2 in [13], which in-

creases p when the smoothed function gradient is small, Algorithm 4.2 increases the precision

parameter only when it does not produce sufficient descent in ψ(·), as verified by (65) and

(66). A small precision parameter may produce an ascent direction in ψ(·) due to the poor

accuracy of the smoothed function approximation. Thus, insufficient descent is a signal that

the precision parameter may be too small. All existing smoothing algorithms only ensure

that ψpΩ(·) decreases at each iteration, but do not ensure descent in ψ(·). Another change

as compared to [6, 13] relates to the line search. All smoothing algorithms are susceptible

to ill-conditioning and small stepsizes. To counteract this difficulty, Algorithm 4.2 moves

forward along the search direction starting from the Armijo step, and stops when the next

step is not a descent step in ψ(·); see Step 2b.

Algorithm 4.2 has two rules for increasing pi. In the early stages of the calculations,

i.e., when pi ≤ p̂, if sufficient descent in ψ(·) is achieved when moving from xi to zi ((65)

satisfied), then Algorithm 4.2 sets the next iterate xi+1 to zi, retain the current value of the
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precision parameter as progress is made towards the optimal solution of (P ). However, if

(65) fails, then there is insufficient descent and the precision parameter or the working set

needs to be modified to generate a better search direction in the next iteration. In late stages

of the calculations, i.e., pi > p̂, Algorithm 4.2 accepts every new point generated, even those

with insufficient descent, and increases the precision parameter with a constant value.

The next lemma is similar to Lemma 4.1.

Lemma 4.2. Suppose that {xi}∞i=0 ⊂ Rd is a sequence constructed by Algorithm 4.2. Then,

there exists an i∗ ∈ N0 and a set Ω∗ ⊂ Q such that working sets Ωi = Ω∗ and ψΩ∗(xi) = ψ(xi)

for all i ≥ i∗.

Proof. The first part of the proof follows exactly from the proof for Lemma 4.1. Next, since

Q̂(xi) ⊂ Ωi for all i; see Steps 3 and 4 of Algorithm 4.2, ψΩ∗(xi) = ψ(xi) for all i ≥ i∗.

Lemma 4.3. Suppose that Assumption 2.1 holds, and that the sequences {xi}∞i=0 ⊂ Rd

and {pi}∞i=0 ⊂ R are generated by Algorithm 4.2. Then, the following properties hold: (i) the

sequence {pi}∞i=0 is monotonically increasing; (ii) if the sequence {xi}∞i=0 has an accumulation

point, then pi →∞ as i →∞, and
∑∞

i=0
1
pi

= +∞.

Proof. We follow the framework of the proof for Lemma 3.1 of [6]. (i) The precision

parameter is adjusted in Steps 3 and 4 of Algorithm 4.2. In Step 3, if (65) is satisfied, then

pi+1 = pi; if (65) fails, pi is replaced by ξpi > pi. In Step 4, pi+1 = pi + ∆p ≥ pi + 1 > pi.

(ii) Suppose that Algorithm 4.2 generates the sequence {xi}∞i=0 with accumulation point

x∗ ∈ Rd, but {pi}∞i=0 is bounded from above. The existence of an upper bound on pi implies

that pi ≤ p̂ for all i ∈ N0, because if not, Algorithm 4.2 will enter Step 4 the first time at

some iteration i′ ∈ N0, and re-enter Step 4 for all i > i′, and pi → ∞ as i → ∞. Thus, the

existence of an upper bound on pi implies that Algorithm 4.2 must never enter Step 4.

The existence of an upper bound on pi also implies that there exist an iteration i∗ ∈ N0

such that (65) is satisfied for all i > i∗, because if not, pi will be replaced by ξpi repeatedly,

and pi → ∞ as i → ∞. This means that ψ(xi+1) − ψ(xi) ≤ −γ/pi
ν for all i > i∗. Since

pi ≤ p̂ for all i ∈ N0, ψ(xi) → −∞ as i →∞. However, by continuity of ψ(·), and x∗ being

an accumulation point, ψ(xi)→Kψ(x∗), where K ⊂ N0 is some infinite subset. This is a

contradiction, so pi →∞.

Next, we prove that
∑∞

i=0
1
pi

= +∞. Since pi →∞, there exist an iteration i∗ ∈ N0 such

that pi > p̂ for all i ≥ i∗. This means that the precision parameter will be adjusted by the

19



rule pi+1 = pi + ∆p for all i ≥ i∗. The proof is complete by the fact that
∑∞

i=1 1/i = ∞.

Lemma 4.4. Suppose that Assumption 2.1 holds. Then, for every bounded set S ⊂ Rd and

parameters α, β ∈ (0, 1), there exist a KS < ∞ such that, for all p ≥ 1, Ω ⊂ Q, and x ∈ S,

ψpΩ(x + λpΩ(x)hpΩ(x))− ψpΩ(x) ≤ −αKS‖∇ψpΩ(x)‖2

p
, (67)

where λpΩ(x) is the stepsize defined by (61), with pi replaced by p, Ωi replaced by Ω, and xi

replaced by x.

Proof. If hpΩ(x) is given by (60) with BpΩ(x) as in (46), then the result follows by the same

arguments as in the proof for Lemma 3.2 of [6]. If hpΩ(x) is given by (60) with BpΩ(x) as

in (47), then the result follows by similar arguments as in the proof for Lemma 3.4 of [6],

but the argument deviates to account for the fact that the lower bound on the eigenvalues

of BpΩ(x) takes on the specific value of 1 in Algorithm 4.2.

Lemma 4.5. Suppose that Assumption 2.1 holds and that {xi}∞i=0 ⊂ Rd is a bounded sequence

generated by Algorithm 4.2. Let Ω∗ ⊂ Q and i∗ ∈ N0 be as in Lemma 4.2, where Ωi = Ω∗

for all i ≥ i∗. Then, there exist an accumulation point x∗ ∈ Rd of the sequence {xi}∞i=0 such

that θΩ∗(x
∗) = 0.

Proof. Suppose that {xi}∞i=0 is a bounded sequence generated by Algorithm 4.2. Suppose

that there exist an ρ > 0 such that

lim inf
i→∞

‖∇ψpiΩ∗(xi)‖ ≥ ρ. (68)

Since {xi}∞i=0 is a bounded sequence, it has at least one accumulation point. Hence, by

Lemma 4.3, pi →∞, as i →∞. Consider two cases, xi+1 = yi or xi+1 = zi in Algorithm 4.2.

If xi+1 = yi, by Lemma 4.4, there exist an M < ∞ such that

ψpiΩ∗(xi+1)− ψpiΩ∗(xi) ≤ −αM‖∇ψpiΩ∗(xi)‖2

pi

, (69)

for i ≥ i∗. Hence,

ψpi+1Ω∗(xi+1)− ψpiΩ∗(xi) = ψpi+1Ω∗(xi+1)− ψpiΩ∗(xi+1) + ψpiΩ∗(xi+1)− ψpiΩ∗(xi)

≤ −αM‖∇ψpiΩ∗(xi)‖2

pi

, (70)

for i ≥ i∗, where we have used the fact from Proposition 2.1 that

ψpi+1Ω∗(xi+1) ≤ ψpiΩ∗(xi+1), (71)
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for i ≥ i∗, because pi+1 ≥ pi from Lemma 4.3.

Next, if xi+1 = zi, then (65) or (66) is satisfied. It follows from (9) and Lemma 4.2 that,

ψpi+1Ω∗(xi+1)− ψpiΩ∗(xi) ≤ ψΩ∗(xi+1) +
log |Ω∗|

pi+1

− ψΩ∗(xi)

= ψ(xi+1) +
log |Ω∗|

pi+1

− ψ(xi)

≤ − γ

pi
ν

+
log |Ω∗|

pi

=
−γ + pi

ν−1 log |Ω∗|
pi

ν
. (72)

From (70) and (72), for all i ≥ i∗,

ψpi+1Ω∗(xi+1)− ψpiΩ∗(xi) ≤ max

{
−αM‖∇ψpiΩ∗(xi)‖2

pi

,
−γ + pi

ν−1 log |Ω∗|
pi

ν

}
(73)

By Proposition 2.1, ‖∇ψpiΩ∗(xi)‖ is bounded because {xi}∞i=0 is bounded. Since ν ∈ (0, 1),

there exist an i∗∗ ∈ N0, where i∗∗ ≥ i∗, such that

−αM‖∇ψpiΩ∗(xi)‖2

pi

≥ −γ + pi
ν−1 log |Ω∗|
pi

ν
, (74)

for all i ≥ i∗∗. Therefore, from (73),

ψpi+1Ω∗(xi+1)− ψpiΩ∗(xi) ≤ −αM‖∇ψpiΩ∗(xi)‖2

pi

, (75)

for all i ≥ i∗∗. Since by Lemma 4.3,
∑∞

i=0 1/pi = +∞, it follows from (70) and (75) that

ψpiΩ∗(xi) → −∞, as i →∞. (76)

Let x∗ be an accumulation point of {xi}∞i=0. That is, there exist an infinite subset K ⊂ N0

such that xi→Kx∗. Based on (9), Lemma 4.3, and continuity of ψΩ∗(·), it follows that

ψpiΩ∗(xi)→KψΩ∗(x
∗), as i →∞, which contradicts (76). Hence, lim infi→∞ ‖∇ψpiΩ∗(xi)‖ = 0.

Consequently, there exists an infinite subset K∗ ⊂ N0 and an x∗ ∈ Rd such that xi → x∗ and

θpiΩ∗(xi) →K∗
0, as i → ∞, which implies that lim supi→∞ θpiΩ∗(xi) ≥ 0. From Definition

2.1, Theorem 2.1, and the fact that θΩ∗(·) is a nonpositive function, θΩ∗(x
∗) = 0.

Theorem 4.2. Suppose that Assumption 2.1 holds. (i) If Algorithm 4.2 constructs a bounded

sequence {xi}∞i=0 ⊂ Rd, then there exists an accumulation point x∗ ∈ Rd of the sequence

{xi}∞i=0 that satisfies θQ(x∗) = 0. (ii) If Algorithm 4.2 constructs a finite sequence {xi}i∗
i=0 ⊂

Rd, where i∗ < ∞, then Step 2b constructs an unbounded infinite sequence {zi∗l′}−∞l′=l with

ψ(zi∗l′−1) < ψ(zi∗l′), (77)

for all l′ ∈ {l, l − 1, l − 2, ...}, where l is the tentative Armijo stepsize computed in Step 2a.
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Proof. First, we consider (i). Let the set Ω∗ ⊂ Q be as in Lemma 4.2, where Ωi = Ω∗ for

all i ≥ i∗. Based on Lemma 4.5, there exist an accumulation point of the sequence {xi}∞i=0,

x∗ ∈ Rd such that θΩ∗(x
∗) = 0. The conclusion then follows by similar arguments as in

Theorem 4.1.

We next consider (ii). Algorithm 4.2 constructs a finite sequence only if it jams in

Step 2b. Then, Substep 1 constructs an infinite sequence {zi∗l′}−∞l′=l satisfying (77) for all

l′ ∈ {l, l− 1, l− 2, ...}. The infinite sequence is unbounded since hpiΩi
(xi) 6= 0 as (77) cannot

hold otherwise, and β ∈ (0, 1).

Next, we consider the run-time complexity of Algorithms 4.1 and 4.2 to achieve a near-

optimal solution of (P ). Suppose that all functions f j(·) are active, i.e., Ωi = Q, near an

optimal solution. If BpΩ(·) is given by (46), then the main computational work in each

iteration of Algorithms 4.1 and 4.2 is the calculation of ∇ψpQ(·), which takes O(qd2) op-

erations under Assumption 3.2; see the proof of Theorem 3.1. If BpΩ(·) is given by (47),

then the main computational work is the calculation of (47) and hpΩ(x). Under Assump-

tion 3.2, it takes O(qd) operations to compute µj
p(x), j ∈ Q, O(qd2) to compute ∇f j(x),

j ∈ Q, O(d2) to multiply ∇f j(x)∇f j(x)T , O(qd2) to sum
∑

j∈Ω µj
p(x)∇f j(x)∇f j(x)T , O(qd)

to sum
∑

j∈Q µj
p(x)∇f j(x), and O(d2) to multiply [

∑
j∈Ω µj

p(x)∇f j(x)][
∑

j∈Ω µj
p(x)∇f j(x)]T .

The minimum eigenvalue computation of HpΩ(x) for Algorithm 4.2 takes O(d2) operations

(see [21]). In all, the number of operations to obtain BpΩ(x) is O(qd2). A direct method for

solving a linear system of equations to compute hpΩ(x) results in O(d3) operations; see for

example page 63 of [22]. Hence, if BpΩ(·) is given by (47), then the computational work in

each iteration of Algorithms 4.1 and 4.2 is O(qd2 + d3).

It is unclear how many iterations Algorithms 4.1 and 4.2 would need to achieve a near-

optimal solution as a function of q. However, since they may utilize Quasi-Newton search

directions and adaptive precision adjustment, there is reason to believe that the number

of iterations will be no larger than that of Algorithm 3.1, which uses the steepest descent

direction and a fixed precision parameter. Thus, suppose that for some tolerance t > 0,

the number of iterations of Algorithms 4.1 and 4.2 to generate {xi}n
i=0, with the last iterate

satisfying ψ(xn)−ψ∗ ≤ t, is no larger than O(log q), as is the case for Algorithm 3.1. Then,

focusing on q, we find that under these assumptions, the run-time complexity of Algorithms

4.1 and 4.2 to generate a near-optimal solution is no larger than O(q log q).
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5 Numerical Results

We present an empirical comparison of Algorithms 4.1 and 4.2 with algorithms from the

literature over a set of problem instances from [6, 7] as well as randomly generated instances;

see Appendix A and Table 1. This study appears to be the first systematic comparison of

smoothing and SQP algorithms for large-scale problems. We examine problem instances

with number of functions up to three orders of magnitude larger than previously reported.

Specifically, we examine (i) Algorithm 2.1 of [7], an SQP algorithm with two QPs that

we refer to as SQP-2QP, (ii) Algorithm A in [9], a one-QP SQP algorithm that we refer to

as SQP-1QP, (iii) Algorithm 3.2 in [13], a smoothing Quasi-Newton algorithm referred to

as SMQN, (iv) Pshenichnyi-Pironneau-Polak min-max algorithm (Algorithm 2.4.1 in [17]),

referred to as PPP, (v) an active-set version of PPP as stated in Algorithm 2.4.34 in [17];

see also [23], which we refer to as ε-PPP, and (vi) Algorithms 4.1 and 4.2 of the present

paper. We refer to Appendix B for details about algorithm parameters. With the exception

of PPP and SQP-1QP, the above algorithms incorporate active-set strategies and, hence,

appear especially promising for solving large-scale problems. We implement and run all

algorithms in MATLAB version 7.7.0 (R2008b) (see [24]) on a 3.73 GHz PC using Windows

XP SP3, with 3 GB of RAM. All QPs are solved using TOMLAB CPLEX version 7.0 (R7.0.0)

(see [25]) with the Primal Simplex option, which preliminary studies indicate result in the

smallest QP run time. We also examined the LSSOL QP solver (see [26]), but its run times

appear inferior to that of CPLEX for large-scale QPs arising in the present context.

Algorithm 2.1 of [7] is implemented in the solver CFSQP [27] and we have verified that

our MATLAB implementation of that algorithm produces comparable results in terms of

number of iterations and run time as CFSQP. We do not directly compare with CFSQP

as we find it more valuable to compare different algorithms using the same implementation

environment (MATLAB) and the same QP solver (CPLEX).

We carry out a comprehensive study to identify an ε (see (45)) in the algorithms’ active-

set strategies that minimizes the run time for the various algorithms over a wide range of

ε (1,000 to 1 · 10−20). We find that SQP-2QP is insensitive to the selection of ε, primarily

because the algorithm includes additional steps to aggressively trim the working set. ε-

PPP is highly sensitive to ε with variability within a factor of 200 in run times. SMQN,

Algorithm 4.1, and Algorithm 4.2 accumulate functions in the working set and therefore are
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also sensitive to ε. The run times of SMQN, Algorithm 4.1, and Algorithm 4.2 tend to vary

within a factor of ten. The below results are obtained using the apparent, best choice of ε

for each algorithm.

For Algorithm 4.2, we mainly use the Quasi-Newton direction with BpΩ(x) as defined

in (47), because preliminary test runs show that generally, the alternate steepest descent

direction with BpΩ(x) as defined in (46) produces slower run times.

We examine all problem instances from [6, 7] except two that cannot be easily extended

to large q. As the problem instances with large dimensionality in [6, 7] do not allow us

to adjust the number of functions, we create two additional sets of problem instances. All

problem instances are described in detail in Appendix A.

We report run times to achieve a solution x that satisfies

ψ(x)− ψtarget ≤ t, (78)

where ψtarget is a target value (see Appendix A) equal to the optimal value (if known) or

a slightly adjusted value from the optimal values reported in [6, 7] for smaller q. We use

t = 10−5. Although this termination criteria is not possible for real-world problems, we find

that it is the most useful criterion in this study.

Table 2 summarizes the run times (in seconds) of the various algorithms, with columns

2 and 3 giving the number of variables d and functions q, respectively. Run times in boldface

indicate that the particular algorithm has the shortest run time for the specific problem

instance. The numerical results in Table 2 indicate that in most problem instances, the

run times are shortest for SQP-2QP or Algorithm 4.2. Table 2 indicates that SQP-2QP

is significantly more efficient than SQP-1QP for problem instances ProbA-ProbG. This is

due to the efficiency of the active-set strategy in SQP-2QP, which is absent in SQP-1QP.

However, for ProbJ-ProbM, SQP-1QP is comparable to SQP-2QP. This is because at the

optimal solution of ProbJ-ProbM, all the functions are active. This causes the active-set

strategy in SQP-2QP to lose its effectiveness as the optimal solution is approached.

Table 2 indicates also that Algorithm 4.1 is significantly more efficient than SMQN for

most problem instances. As the only difference between the two algorithms lie in their

precision-parameter adjustment scheme, this highlights the sensitivity in the performance of

smoothing algorithms to the control of their precision parameters. Table 2 also shows that

Algorithm 4.2 is more efficient than Algorithm 4.1 and SMQN for most problem instances.
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Table 2 indicates that SQP-2QP is generally more efficient than Algorithm 4.2 for prob-

lem instances with small dimensionality, d ≤ 4 (specifically ProbA-ProbG), and vice versa.

This is consistent with the common observation that SQP-type algorithms may be inefficient

for instances of large dimensionality; see for example [7].

Table 2 shows that some algorithms return locally optimal solutions for some problem

instances (labeled “local” in Table 2). In view of these results, there is an indication that

smoothing algorithms (SMQN, Algorithms 4.1 and 4.2) tend to find global minima more

frequently than PPP and SQP algorithms.

Table 3 presents similar results as in Table 2, but for larger q. We do not present results

for PPP and SQP-1QP as the required QPs exceed the memory limit. The comprehensive

sensitivity studies for ε show significant improvement for Algorithm 4.2 for ProbJ-ProbM if

a large ε is used. Hence, we include the results for Algorithm 4.2 with ε = 1000 in Table

3. Note that such a large ε means that there is effectively no active-set strategy. Sensitivity

tests conducted for the other algorithms with a larger ε show no improvement in their run

times.

The observations from Table 3 are similar to those for Table 2. Table 3 indicates that

Algorithm 4.2 with ε = 1000 is efficient for ProbJ-ProbM, which are large dimensionality

problem instances with a significant number of functions active at the optimal solution. For

completeness, the run times for Algorithm 4.2 with ε = 1000 for ProbJ-ProbM in Table 2

are 2.8, 14.3, 0.36 and 3.0 seconds respectively, while the run times for the other problem

instances are slower than Algorithm 4.2 with ε = 10−20.

The results in Tables 2 and 3 indicate that among the algorithms considered, SQP-

2QP and Algorithm 4.2 are the most efficient algorithms for minimax problems with a

large number of functions. The run times for ProbJ-ProbM indicate that SQP-2QP is less

efficient for problem instances with a significant number of the functions that is ε-active at

the solution, as the active-set strategy loses its effectiveness.

The problem instances from the literature examined in Tables 2 and 3 include either

cases with few functions ε-active at an optimal solution (ProbA-ProbI) or cases with all

functions ε-active (ProbJ-ProbM). We also examine randomly-generated problem instances

with an intermediate number of functions ε-active at the optimal solution; see ProbN in

Table 1. The optimal values are unknown in this case but the target values as given in Table

1 appear to be close to the global minima.
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Table 4 presents the run times for Algorithm 4.2 and SQP-2QP on ProbN. As the

problem instances are relatively well-conditioned, Algorithm 4.2 with BpΩ(·) given by (46),

i.e., a steepest descent (SD) direction, may perform well and is included in the table. The

parameter ε for Algorithm 4.2 is set to 1000 for this set of problem instances, as preliminary

test runs show that it is consistently better than other choices. Table 4 indicates that SQP-

2QP is less efficient than Algorithm 4.2 for problem instances with large dimensionality, and

where there is a significant number of functions ε-active at the optimal solution. The last

row in Table 4 shows that for problem instances with high dimensionality (d ≥ 10, 000), the

storage of the d× d HpΩ(·) matrix for both SQP-2QP and Algorithm 4.2, with BpΩ(·) given

by (47), causes both algorithms to terminate due to memory limitations. Thus, Algorithm

4.2, with BpΩ(·) given by (46), which do not have any matrix to store, may be a reasonable

alternative for problem instances with large dimensionality.

6 Conclusions

This paper focused on finite minimax problems with many functions, which may result from

finely discretized semi-infinite minimax or optimal control problems. We conduct run-time

complexity and rate of convergence analysis of smoothing algorithms for solving such prob-

lems and compare them with those of SQP algorithms. We find that smoothing algorithms

may only have the sublinear rate of convergence 1/n, where n is the number of iterations.

However, as shown by the complexity results, their slow rate of convergence may be com-

pensated by small computational work per iteration, which is of order O(q), where q is the

number of functions. We present two smoothing algorithms using exponential penalty func-

tions with active-set strategies. The first algorithm is based on a recent smoothing algorithm,

but uses a much simpler rule for precision adjustment. The second algorithm implements a

novel line search rule that aims to ensure descent in the original objective function, as op-

posed to descent in the smoothed objective function that existing smoothing algorithms use.

We provide a comprehensive numerical comparison between smoothing and SQP algorithms

and find that the proposed algorithms are competitive, and especially efficient for large-scale

minimax problems with a significant number of functions ε-active at stationary points.
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Appendix A. Problem Instances

Table 1 describes the problem instances used. Most columns are self-explanatory. Columns 2

and 3 give the number of variables d and functions q, respectively. The target values (column

7) are equal to the optimal values (if known) or a slightly adjusted value from the optimal
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values reported in [6, 7] for smaller q. The same target values are used for ProbA-ProbM in

Tables 2 and 3.

In this appendix, we denote components of x ∈ Rd by subscripts, i.e., x = (x1, x2, ..., xd) ∈
Rd. When the problem is given in semi-infinite form, as in (80a) - (80i) below, the set Y is

discretized into q equally spaced points if

ψ(x) = max
y∈Y

φ(x, y), (79a)

and q/2 equally spaced points if

ψ(x) = max
y∈Y

|φ(x, y)|. (79b)

ProbA is defined by (79a) and (80a) below, while ProbB-ProbI are defined by (79b) and

(80b)-(80i) below, respectively.

φ(x, y) = (2y2 − 1)x + y(1− y)(1− x), Y = [0, 1] (80a)

φ(x, y) = (1− y2)− (0.5x2 − 2yx), Y = [−1, 1], (80b)

φ(x, y) = y2 − (yx1 + x2 exp(y)), Y = [0, 2], (80c)

φ(x, y) =
1

1 + y
− x1 exp(yx2), Y = [−0.5, 0.5], (80d)

φ(x, y) = sin y − (y2x3 + yx2 + x1), Y = [0, 1], (80e)

φ(x, y) = exp(y)− x1 + yx2

1 + yx3

, Y = [0, 1], (80f)

φ(x, y) =
√

y − [x4 − (y2x1 + yx2 + x3)
2], Y = [0.25, 1], (80g)

φ(x, y) =
1

1 + y
− [x1 exp(yx3) + x2 exp(yx4)], Y = [−0.5, 0.5], (80h)

φ(x, y) =
1

1 + y
− [x1 exp(yx4) + x2 exp(yx5) + x3 exp(yx6)], Y = [−0.5, 0.5], (80i)

ProbJ-ProbM are defined by ψ(x) = maxj∈Q f j(x), with f j(x) as given in (80j)-(80m) below,

respectively.

f j(x) = x2
j , j = {1, ..., q}, (80j)

f j(x) = x2
(j−1)2+1 + x2

2j, j = {1, ..., q}, (80k)

f j(x) = x2
(j−1)4+1 + x2

(j−1)4+2 + x2
(j−1)4+3 + x2

4j, j = {1, ..., q}, (80l)

f j(x) = x2
kj

+ x2
lj
, j =

{
1, 2, 3, ...,

(
d

2

)}
, (80m)
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where (kj, lj) are all the different 2-combinations (see Section 3.3 of [28]) of {1, 2, 3, ..., d},
and

f j(x) = ajx
2
i + bjxi + cj, j = {1, ..., q}, (80n)

where i =
⌈

j
q/d

⌉
, and the constants aj, bj, cj are randomly generated from a uniform distri-

bution on [0.5, 1].

Appendix B. Algorithm Details and Parameters

This appendix provides details on the algorithms implemented.

PPP. Pshenichnyi-Pironneau-Polak min-max algorithm (Algorithm 2.4.1 in [17]) with

α = 0.5, β = 0.8, and δ = 1. We use the same Armijo stepsize rule parameters α and β for

all algorithms.

ε-PPP. ε-Active PPP algorithm (Algorithm 2.4.34 in [17] and the proof of convergence

in [23]) with the same parameters as above. The algorithm implemented is the more recent

version in [23], which implements the primal form of the optimality function. Preliminary

experiments show that the primal form is more efficient for large-scale problems with a large

number of functions than the equivalent dual form on page 176 of [17].

SQP-2QP. Sequential Quadratic Programming with two QPs in each iteration; see Al-

gorithm 2.1 of [7]. We use the algorithm parameters recommended in [7] as well as monotone

line search. (We examined the use of nonmonotone line search in CFSQP, but find it inferior

to monotone line search on the set of problem instances and therefore implemented the latter

approach.)

SQP-1QP. Sequential Quadratic Programming with one QP in each iteration; see Algo-

rithm A in [9]. As there are no proposed parameter settings in [9], the algorithm parameters

used are the mid-point values stated in Algorithm A, α = 0.25 (α in this algorithm is not

the Armijo parameter), τ = 2.5, and matrix H0 = identity matrix. The same parameter

settings for α and H0 are used by a co-author in a similar algorithm to solve the minimax

problem; see [29].

SMQN. Smoothing Quasi-Newton algorithm; see Algorithm 3.2 in [13]. There are

no proposed parameter settings in [13]. We adopt commonly-used parameters from other

smoothing algorithms, p0 = 1 and B(·) = Identity matrix. For the Penalty-Parameter
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Adjustment subroutine, which is the same as that in [6], we use Case (A) of [6], which is

shown to be comparable to Case (B).

Algorithm 4.1. The algorithm parameters used are the same as for SMQN, except

for the parameters in the different Adaptive Penalty Parameter Adjustment subroutine,

ξ = 2, ς = 2.

Algorithm 4.2. The algorithm parameters used are t = 10−5, p0 = 1, p̂ = (log q/t) ·
1010, κ = 1030, α = 0.5, β = 0.8, ξ = 2, γ = t · 10−10, ν = 0.5, ∆p = 10.
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Table 4: Run times (in seconds) of algorithms on problem instance ProbN. “SD” and “QN” indicate

that Algorithm 4.2 uses BpΩ(·) given by (46) and (47), respectively. The word “mem” indicates

that the algorithm terminates due to insufficient memory.
d q SQP-2QP Algo 4.2 SD Algo 4.2 QN

(ε = 1) (ε = 1000) (ε = 1000)

10 10,000 0.42 0.64 0.62

100 10,000 0.82 0.48 0.54

1,000 10,000 124.9 0.38 4.8

10 100,000 4.1 3.8 4.2

100 100,000 11.5 3.8 4.1

1,000 100,000 mem 4.3 9.7

1,000 1,000,000 mem 37.2 42.5

1,000 10,000,000 mem 421.8 492.5

10,000 100,000 mem 6.3 mem
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